On the interpretation of SKS splitting measurements in the presence of several layers of anisotropy
نویسندگان
چکیده
S U M M A R Y Concerns over the validity of expressions derived by Montagner et al. that link SKS splitting measurements to the variation with depth of anisotropic parameters in the upper mantle have been recently expressed, pointing out that the long period approximations applied by these authors may not be valid for the frequency range commonly used in SKS studies, and in particular, that the anisotropy splitting parameters should depend on the order in which different anisotropy layers are arranged with depth. We show here that indeed, measurements of splitting time and fast axis direction performed at individual azimuths do depend on the order of layering, however, the expressions of Montagner et al. concern station-averaged quantities that do not depend on the order of layers. It is therefore correct to use these expressions in joint inversions of surface waveforms and SKS station-averaged splitting measurements. On the other hand, the depth-dependent sensitivity of surface waveforms naturally provides constraints on the order of layering. Having clarified this confusion, we extend the expressions of Montagner et al. to the case of a tilted axis of symmetry and non-vertical incident waves, and show that station-averaged estimates of ‘effective’ splitting parameters: splitting time, fast axis direction and tilt of the fast axis, can be related to the integral with depth of quantities, which now depend not only on the local splitting time and fast axis direction, but also on the local tilt of the fast axis, thus providing constraints also on the variation of the tilt with depth. We show that the effective parameters used as constraints in the inversion can be obtained either from the measurement of splitting intensity, or through a parameter search and cross-convolution method. In particular, in the case when the effective tilt is significant, the splitting intensity no longer presents 180◦ periodicity with azimuth, providing a diagnostic tool for the presence of such tilts in the upper mantle. Thus, combining body-wave and surface wave observations also has the potential of constraining the variation with depth of the tilt of the fast axis of anisotropy, a geodynamically important parameter.
منابع مشابه
SKS splitting beneath Transportable Array stations in eastern North America and the signature of past lithospheric deformation
Seismic anisotropy in the upper mantle beneath continental interiors is generally complicated, with contributions from both the lithosphere and the asthenosphere. Previous studies of SKS splitting beneath the eastern United States have yielded evidence for complex and laterally variable anisotropy, but until the recent arrival of the USArray Transportable Array (TA) the station coverage has bee...
متن کاملInvestigation of the strength and trend of seismic anisotropy beneath the Zagros collision zone
The Zagros collision zone is known as an active tectonic zone that represents the tectonic boundary between the Eurasian and Arabian plates. A popular strategy for gaining insight into the upper mantle processes is to examine the splitting of seismic shear waves and interpret them in terms of upper mantle anisotropy and deformation. Core phases SK(K)S from over 278 earthquakes (MW ≥ ...
متن کاملA synthesis of seismic P and S anisotropy
S U M M A R Y Upper-mantle seismic anisotropy has been observed using a variety of methods, including S and SKS splitting, P and Pn traveltimes, P polarization anomalies and P to S conversions, and surface waves. Care must be taken when comparing the results from different methods because of bias introduced by depth sensitivity, frequency dependence, and simplifying assumptions concerning the f...
متن کاملEvaluating Contributions to SK K S Splitting from Lower Mantle Anisotropy: A Case Study from Station DBIC, Côte D’Ivoire
Measurements of seismic anisotropy constitute a very important tool for examining patterns of flow and mineral properties in the Earth’s mantle. A popular strategy for gaining insight into upper mantle processes is to examine the splitting of SK(K)S phases and interpret them in terms of upper mantle anisotropy and deformation; in such studies, any contribution to splitting from anisotropy in th...
متن کاملLowermost mantle anisotropy beneath the northwestern Pacific: Evidence from PcS, ScS, SKS, and SKKS phases
[1] In this study, we utilize data from broadband seismic stations of the Japanese F-net network to investigate anisotropic structure in the lowermost mantle beneath the northwestern Pacific. The comparison of shear wave splitting from phases that have similar paths in the upper mantle but different paths in the lowermost mantle, such as PcS/ScS or SKS/SKKS, can yield constraints on anisotropy ...
متن کامل